
Efficient Two-Phase Parallel Content Matching
Algorithm for Publish-Subscribe Systems

Medha Shah1 Suhas Doijad2 Dinesh Kulkarni3

Walchand College of Engineering,
Sangli, Maharashtra, India.

Abstract— Content-based subscriptions systems are an emerging
alternative to traditional Publish-Subscribe systems because they
permit more flexible subscriptions along multiple dimensions. In
these systems, each subscription is a set of predicates which may
test arbitrary attributes within an event. However, the matching
problem for content-based systems, determining for each event the
subset of all subscriptions whose predicates match the event, is still
an open problem. We present efficient, scalable tree based
technique as well as the parallel implementation of it, and discuss
their impact. The tree-based technique improves limitation of table
based approach. Also, we present optimized two phase matching
algorithm. Result shows 65% reduction in matching time, and
increase in throughput by 82%.

Keywords — Publish-Subscribe system; Two- phase matching;
 Trie; Parallel Search Tree; Clustering

I. INTRODUCTION

Events are everywhere. New sources of events like social feeds,
IoT devices, RFID tags, cameras, mobile devices, internet
services, websites and data repositories generate events at an
enormous rate. The amount of data is growing exponentially.
Every day at least 2.5 quintillion bytes of data get produced.
The growth in the size of data is exponential. Many applications
want to exploit these events in real time. Many distributed
applications use Pub-Sub communication paradigm as
communication backbone. In the Pub-Sub model, subscribers
typically receive only a subset of the total messages published
by one or more publisher. Here receivers declare their interest
in the particular event in the form of subscription. The publisher
publishes the information of interest as message or notification.
Content-based Pub-Sub delivers to the subscribers published
messages, which match subscriber‘s declared interest. The key
problem in the content-based pub-sub system lies in an efficient
matching of an event against a large number of subscribers on a
single message broker. To minimize user-perceived event
delivery latency and to deliver high throughput are two
fundamental goals of the Pub-Sub system.

Various sequential matching algorithms [2-5] are proposed
earlier. As they are effective at increasing throughput and
reducing the matching time they fail to exploit parallel
architecture available in today’s generation of computers.

Sequential matching algorithms generally fall into one of
two classes [9]. The first class consists of two-phase
algorithms [1, 5], where predicates are evaluated in the first
phase and matched subscriptions are computed in the second
phase. The second class compiles predicates into a tree
structure, where internal nodes represent predicates and leaf
nodes represent subscriptions. Publications traverse the tree
along the path of matching predicates ultimately leading to
matching subscriptions (if any). In this paper, we parallelize
the two-phase algorithm that makes use of Trie data structure,
Parallel Search Tree (PST) and Table based approach in the
first phase. Also, the more optimized approach has been
suggested and tested in the second phase. Probably we are the
first one to introduce tree based approach in the two-phase
algorithm.

The rest of the paper is organized as follows: Section 2
presents the related work about Pub-Sub systems. Section 3
discusses the methodology used for two-phase matching
algorithm along with three new implementations. Complexity
is evaluated in Section 4 with parallelization strategy. Section
5 demonstrates experimental results. Finally, Section 6
provides some conclusive remarks and describes future work.

II. RELATED WORK

Many researchers have attempted to devise new matching
algorithms for content-based Pub-Sub systems. Authors [2-4]
have implemented different algorithms which are sequential
one and amenable for parallelization. Most of the researchers
have stick to two-phase algorithms due to its advantage in
performance and storage. In [1, 3, 5, 9] authors have proposed
a two-phase algorithm which makes use of the Table based
approach. Two parallelization strategies have been implemented
by authors in [1]. The algorithm presented in [3] is considered
as a base for parallel implementation.

Several approaches for XML-based Pub-Sub are given in
[11-13], in which different concepts like XFilter YFilter,
BFilter and top-down matching, bottom-up matching are
reported. XFilter [11] is based on deterministic finite automata
(DFA), which stores user queries and handles each query
individually. Yfilter emphasizes prefix sharing by using
nondeterministic finite automata (NFA).

Medha Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 389-393

www.ijcsit.com 389

III. METHODOLOGY

A. Data Model

A subscription is a set of predicates, which are itself a tuple
containing attribute name, operator, and value. An event is a
collection of pairs, where each pair consists of an attribute
name and value. The operator in a subscription can be <, ≤, ≠,
=,> or ≥. An event’s pair, (<attribute name> x, <value> y),
matches a subscription’s predicate (<attribute name> a,
<operator> b, <value> c) only when x = a and y <operator b> c
is true.

B. Two Phase Matching Algorithm

Here we present the optimized two phase matching
algorithm given in [5]. Two phase algorithm operates in two
phases namely H-phase and C-phase. More efficiency is
achieved by introducing counting along with clustering in the
second phase. Clusters are formed based on a number of
predicates in a subscription. The key to accessing the cluster is
the number of predicates in an event. The following figure
depicts a combination of both, counting and clustering
approach. The figure 1 shows table based approach in the first
phase and counting along with clustering in the second phase.

Fig. 1 Two Phase Matching Engine

The advantage of using table based predicate data structure
is i) easy to access ii) small overhead for storing iii) spatial
locality. But there are some limitations like i) size of the table
has to be predefined ii) domain type of value is restricted to an
integer. Trie and Parallel Search Tree [6-8] can be used to
overcome the limitations. The following section describes these
data structures in detail.

C. Trie-Based Data Structure

Trie is tree data structure used to store strings. A
popular implementation of Trie is dictionary search. Strings
can be easily stored in Trie, but for storing a predicate, some
modification is required. The whole predicate is considered as a
string and stored it into Trie. Figure 2 shows Trie
implementation of some of the predicates.

Fig. 2 Trie Data Structure

The advantage of using this is, all possible domains can
be included in the predicate. But space required for this
approach is much more. To reduce space overhead another
approach, parallel search tree (PST) can be used.

D. Parallel Search Tree-Based Data Structure

The Gryphon project [8] uses a PST algorithm to solve the
matching problem in Pub-Sub systems. In PST each node
corresponds to a test and each subscription is a path from the
root to a leaf. Given an event e, it matches all subscriptions
reached by a tree traversal that only follows an edge if e
matches the constraint denoted by the attribute of the level,
followed by the node and edge labels. Intuitively, the data
structure factorizes tests common to several subscriptions and
thus favors scalability, since it allows a sub-linear matching
complexity [7] with respect to the number of different
subscriptions. The following figure depicts a simple PST.

Fig. 3 PST Data Structure

Looking up data in a Trie data structure, PST is faster,
compared to an imperfect hash function. So hashing phase from
original two- phase algorithm is replaced by tree formation
(T Phase) as shown in the following the figure. Figure 4
shows modified two-phase algorithm shown in figure 1 with
tree data structure.

Medha Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 389-393

www.ijcsit.com 390

Fig. 4 Tree Based Two Phase Matching Engine

The whole two-phase matching process will look as shown
in figure 5.

Fig. 5 Overview of Two – Phase Algorithm

IV. EVALUATION

We have implemented the two-phase algorithm using three
different data structures in H-phase. Both, counting and
counting along with clustering is implemented in C-Phase. For
experimentation purpose workload is generated as discussed
in the paper [1, 9]. Workload contains 100 different attribute
names with more than 1500 different predicates. The number
of subscriptions ranges from 2000 to 100000 along w i t h
2000 e v e n t s . Different p a r a l l e l i z a t i o n techniques
are presented in [1]. ME-IP (Multiple Events Independent
Processing) technique as discussed in [1] is used to increase
throughput (i.e. number of events processed per second) of the
system.

A. Pre-Processing Time Complexity

Pre-processing time [6] is the time to form data structure
based on input subscriptions. For N subscriptions and P unique
predicates, the pre-processing time is almost same for all three
data structures, which is O (NP).

B. Space Complexity

For storing N subscriptions table-based data structure
requires O (A) space, where A is no. of unique attributes.

Whereas for Trie, space required is O (W), where W is the
total length of P predicates and for PST based it is O (P).

C. Matching Time Complexity

As counting along with clustering is used in C-Phase, the
time required for getting matched subscription is NPsat * Savg

+ N, where, NPsat = No. of predicates satisfied by an event,
Savg = Avg. no. of subscriptions per cluster.

V. RESULT AND ANALYSIS

All experimental results are taken on 8 cores Intel Core i7-
2600 CPU running at 3.40 GHz. The operating system is Cent-
OS with kernel version 2.6.32. Compiler used is GCC 4.4.6.

A. C Phase Implementation

Fig. 6 Comparison of matching performance (Counting and
Counting with Clustering)

We first look at the performance of two algorithms used in

C- Phase. Figure 6 shows time required for matching
subscriptions for counting and counting with clustering
approach. Table Based data structure is used in the first
phase. Results shows, counting along with clustering is
better than counting, with improvement in matching the time
of 65%.

B. Input Size versus Matching Time

Fig. 7 Subscription matching performance

Medha Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 389-393

www.ijcsit.com 391

Figure 7 shows time required for parallel (ME-IP)
implementation of three approaches. Trie approach is more
efficient than table or PST. So, as the system has multiple
cores, multiple events are processed simultaneously, which
increases system’s throughput.

Fig. 8 Time for pre-processing

Figure 8 shows pre-processing time required for Table, Trie
and PST approach. This time contains, the time required to
build an actual structure which holds all the predicates along
with the creation of clusters and mapping of predicates to
subscription. Less time is required to build the Trie data
structure as compared with other two data structures.

C. Input Size versus Storage Space

Fig. 9 Space Comparison

Figure 9 shows space requirement of all three approaches.

For Table Based approach size depends upon how many tables
are created at run time. Whereas for Trie based and PST based
structures, space required depends on a number of
predicates. Hence space requirement will go on increasing until
unique predicate occurs. Trie data structure is more space
consuming as compared to PST because Trie stores attribute
name in a predicate character by character. Whereas, PST
stores whole attribute name in a single node of the tree.

D. Processing Units versus Matching Time

Fig. 10 Matching Time requirement of processing units

Figure 10 shows matching time required for a different

number of threads. As a number of threads increases, matching
time decreases. But after certain number (i.e. system’s core
limit) time remains constant. The figure compares matching
time requirements of two C-Phase algorithms.

E. Throughput

Fig. 11 Throughput of ME-IP for two approaches

Figure 11 shows throughput (ME-IP) of the system using

two different algorithms for C-Phase. As counting along with
clustering, reduces the matching time, a number of events are
processed compared to simple counting. Almost 82% more
events are processed with combined approach.

VI. CONCLUSION

In this paper, we have proposed Trie and parallel search
tree data structure to be used in H-phase of the two-phase
algorithm. We also suggest counting + clustering approach
be used in C-phase of the two-phase algorithm. We
presented space and time complexity for approaches
mentioned. To increase the throughput of the system, we have
used ME-IP parallelization technique. Time for pre-processing
and matching is almost same for all three approaches. Table
based approach requires less space to store predicates. But we
can’t include other data

Medha Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 389-393

www.ijcsit.com 392

types such as float or string. This limitation is removed in two
tree-based techniques. The trie-based approach is slightly more
efficient than PST in terms of matching time. But it requires
more space than that of PST. On average PST is suitable for all
cases. In the second phase, counting with clustering outperforms
simple counting. In future, we will implement different
techniques to reduce the matching time and improve efficiency.

REFERENCES
[1] A. Farroukh, E. Ferzli, N. Tajuddin, and H. Jacobsen “Parallel event

processing for content-based publish/subscribe systems,” in proceedings
of the 3rd ACM International Conference on Distributed Event-Based
Systems, 2009.

[2] Françoise Fabret , François Llirbat , João Pereira and Dennis Shasha,
“Efficient matching for content-based publish/subscribe systems “,in
2000.

[3] F. Fabret, H.-A. Jacobsen, D. Shasha st.al., “Filtering algorithms and
implementation for very fast publish/subscribe systems”, in SIGMOD,
2001.

[4] P. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” ACM Comput. Surv., vol. 35, pp. 114–131,
June 2003.

[5] G. Ashayer, H. K. Y. Leung, and H.-A. Jacobsen “Predicate matching and
subscription matching in publish/subscribe systems,” In Proceedings of
the 22nd International Conference on Distributed Computing Systems,
ICDCSW ’02, pages 539–548, Washington.

[6] Marcos K. Aguilera, Robert E. Strom et.al ,”Matching events in a content-
based subscription system”.

[7] J. Legatheaux Martins, S´ergio Duarte, “Routing algorithms for content-
based publish/subscribe systems”, 2008.

[8] P. Jayachandran, R. K. Ganti et.al ,”Benefits of inter-tree optimizations
for content based publish-subscribe in sensor setworks”.

[9] Zhaoran Wang, Yu Zhang, et.al,”Pub/Sub on Stream: A multi-core based
message broker with QoS support”,in DEBS 2012, July 16–20, 2012,
Berlin, Germany July 2012.

[10] Patel Kuldip L. , Savalia Jay M, et.al “Parallelization of complex event
processing on GPU”,HiPC in 2011.

[11] L. Dai, C.-H. Lung, and S. Majumdar. “BFilter – A XML message
filtering and matching approach in publish/subscribe systems”, in Proc. of
the IEEE GLOBECOM, Dec. 2010.

[12] Roger Moussalli, Vassilis J. Tsotras, et.al, “Efficient XML path filtering
using GPUs”,in 2nd International Workshop on Accelerating Data
Management Systems using Modern Processor and Storage Architectures
(ADMS‟11), 2011.

[13] Yang Cao , Chung-Horng Lung , Shikharesh Majumdar, “A peer-to-peer
model for XML publish/subscribe services” in 9th Annual
Communication Networks and Services Research Conference, IEEE 2011.

Medha Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (3) , 2017, 389-393

www.ijcsit.com 393

